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Assessment of tissue stiffness is desirable for clinicians and researchers, as it is well established

that pathophysiological mechanisms often alter the structural properties of tissue. Magnetic res-

onance elastography (MRE) provides an avenue for measuring tissue stiffness and has a long

history of clinical application, including staging liver fibrosis and stratifying breast cancer malig-

nancy. A vital component of MRE consists of the reconstruction algorithms used to derive stiffness

from wave-motion images by solving inverse problems. A large range of reconstruction methods

have been presented in the literature, with differing computational expense, required user input,

underlying physical assumptions, and techniques for numerical evaluation. These differences, in

turn, have led to varying accuracy, robustness, and ease of use. While most reconstruction tech-

niques have been validated against in silico or in vitro phantoms, performance with real data is

often more challenging, stressing the robustness and assumptions of these algorithms. This article

reviews many current MRE reconstruction methods and discusses the aforementioned differ-

ences. The material assumptions underlying the methods are developed and various approaches

for noise reduction, regularization, and numerical discretization are discussed. Reconstruction

methods are categorized by inversion type, underlying assumptions, and their use in human and

animal studies. Future directions, such as alternative material assumptions, are also discussed.
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1 INTRODUCTION

Tissue stiffness is often affected both directly and indirectly by disease, with common examples being fibrosis, tumor growth, and inflammation. As

tissue becomes fibrotic, collagen density increases in the extracellular matrix, leading to a macroscale effect on stiffness.1,2 During tumor growth,

angiogenesis, increased cellular stiffness, and compaction of surrounding tissue can combine to alter material properties.3,4 The significant changes

in hardness often accompanying disease have historically led to palpation being used as an early tool for the detection of certain diseases. While

still invaluable for initial screening, palpation is qualitative, limited to superficial regions of the body, and often most applicable in advanced stages

of disease.

Elastography is an imaging technique that infers stiffness by examining a tissue's response to some excitation. This excitation, often externally

applied, leads to deformation in the tissue, which can be measured by medical imaging methods such as magnetic resonance (MR) or ultrasound

(US). These measured deformations can be used to reconstruct stiffness values by solving equations based on a chosen tissue model that relates

these quantities. The calculated values of stiffness (typically the shear modulus) are similar to what is felt during palpation.5 However, elastography,

besides being quantitative, has the added benefits of being able to examine deeper in the body, potentially detecting small changes in stiffness

present in earlier stages of disease, and measuring additional viscous properties of the tissue.6 Furthermore, the shear modulus has been seen to

vary more over various healthy and diseased tissue types than the bulk modulus or other imaging modalities such as T1 relaxation.7

Abbreviations used: CDI, Curl-based direct inversion; DI, Direct inversion; FEM, Finite element method; LFE, Local frequency estimation; MDEV, Multifrequency dual elastovisco; MRE,
Magnetic resonance elastography; TWE, Traveling wave expansion.
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FIGURE 1 Anatomical, wave, and stiffness images of normal and fibrotic liver. While little difference is apparent in the anatomical images, large
differences are seen in the wave data and reconstructed stiffness. Also clearly demonstrated is the relationship between increased wavelength
and increased stiffness (Reprinted from Yin et al24 with permission from Elsevier)

FIGURE 2 An illustration of a typical process of harmonic MRE. A, The patient or object is subjected to a single frequency vibration while in the
MR scanner. Here, data collected from MRE performed on a CIRS 049 elastography phantom (CIRS Inc., Norfolk, VA, USA) are shown. B, During
phase contrast imaging, the complex-valued k-space data are collected and constructed into a magnitude image and 3D displacement field images
at several time points along the cycle of the vibration. C, The real-valued time-dependent displacement data are converted by Fourier transform to
complex-valued steady-state wave data. D, A reconstruction algorithm solves an inverse problem to compute the complex shear modulus.38 The
shape and differing stiffness values of the inclusions in the phantom are readily apparent in the reconstruction, whereas in the MR magnitude
image in B the inclusions appear very similar. The imaginary part of the shear modulus in this phantom should be zero throughout. This appears to
be the case with this reconstructed image, besides the small spike in the stiffest inclusion. This stiff region corresponds to a long wavelength and
this highlights an important balance in MRE. For longer wavelengths, noise becomes a more dominant factor during calculations, for some
reconstruction methods, potentially leading to more error in the resulting stiffness
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The first experiments in elastography began with US imaging.8-11 The low cost and wide availability of US continues to make this a popular elas-

tography imaging method.12 Later, MR methods for elasticity imaging were developed,13-15 with advantages including a full 3D image stack of the

tissue displacements and large, movable, and deeper fields of view.7,12 For a history of US and MR elastography (MRE), see Sarvazyan et al.16 Elastog-

raphy has also been performed with optical coherence tomography (OCT), where advantages include high resolution and smaller scale imaging,17-21

X-ray,22 and mechanical imaging,23 which measures surface stress patterns to infer internal structure.

MRE has demonstrated success in many areas. Investigations into liver have revealed that MRE is capable of staging liver fibrosis24,25 (Figure 1)

with greater separation than other modalities, including US elastography and MR diffusion-weighted imaging.26,27 MRE has also seen success in

differentiating benign and malignant tumors in breast28 and liver tumors from surrounding healthy and fibrotic tissue29 by their viscoelastic char-

acteristics. MRE is able to image waves in the brain, leading to research on stiffness changes due to Alzheimer's,30,31 Parkinson's,32 and multiple

sclerosis33,34 (as opposed to US elastography, which has only been used to measure brain stiffness in surgical contexts35,36).

Within MRE there are many differing implementations, where considerations include the type of tissue excitation, the hardware required to

produce the excitation, acquisition methods, and reconstruction methods. Three common tissue excitation techniques across elastography are

quasi-static deformations, transient waves due to singular pulses, and harmonic wave motion due to a single frequency vibration; however, the most

common technique in MRE is harmonic.37 The process of harmonic MRE (Figure 2) works by inducing periodically steady waves in a region of inter-

est (ROI) in a patient or object, performing phase-contrast MR imaging, and, from the complex-valued k-space data, constructing displacement data

representing wave motion within the ROI. Finally, a reconstruction method is applied to calculate the underlying stiffness that modulated the mea-

sured wave behavior. Therefore, elastography reconstruction is considered an inverse problem. Typically, due to the small displacements involved,

the linear elasticity or linear viscoelasticity equations are used to relate the displacements and stiffness, and hence it is these equations that are

inverted. The resulting image of elasticity is usually of the same resolution as the displacement images and is sometimes called an elastogram.

MRE reconstruction algorithms have been implemented in many ways, with different underlying assumptions and employing varying processes

for the inverse solution. Understanding these differences is important, as they effect uniqueness, accuracy, robustness, ease of use, and required

computation time. This article discusses these effects while comparing and summarizing MRE reconstruction methods and associated studies cur-

rently present in the literature. The theory underlying MRE reconstruction is presented and the applicability of MRE in various human and animal

studies is described.

In Section 2, theory and background that is common across many MRE reconstruction methods is presented. Section 3 contains descriptions

and categorizations of various methods and includes some mathematical underpinnings and references to reconstruction usage in other studies.

A discussion and conclusion are provided in Section 4, highlighting the scientific and clinical value of MRE as well as some of the key challenges in

reconstruction.

2 THEORY

In harmonic MRE, a transducer is placed against a patient and produces single-frequency waves (typically 30–90 Hz) that move through an ROI. Due

to the small displacements associated with these waves, the linear elasticity or viscoelasticity equations are typically assumed to govern the tissue

deformation. An isotropic assumption is also typically made of tissue during MRE, which is usually considered reasonable depending on the tissue

type. The isotropic linear elastic equations contain three material parameters. The first is the density, 𝜌, and common pairs for the remaining two

include the following: (i) the two Lamé parameters, 𝜆 and G (the latter is also called the shear modulus); and (ii) the Young's modulus, E, and Poisson's

ratio, 𝜈. As materials approach incompressibility, the following occur: 𝜈 → 0.5, 𝜆 → ∞, and E → 3G. For tissue that is nearly incompressible, knowing

the shear modulus is therefore essentially equivalent to knowing the Young's modulus.

The wave displacements are constructed from complex-valued k-space MRI data. These data are captured at several time points over the period

of the wave (four or eight time points is common). Occasionally, even at this stage, qualitative conclusions can be made regarding the underlying

stiffness, as changes in wavelength are sometimes visible and these correspond to changes in stiffness (in the absence of boundary effects). For

quantitative results, however, reconstruction is used. Typically, due to the time harmonic excitation, dynamic vibrational analysis is used, which mod-

els the displacements and stiffness parameters as complex-valued entities. The equations, in this form, then also capture effects of viscoelasticity.

A discrete Fourier transform converts the time-dependent real displacements, ur(x, t), into a steady-state complex-valued field, u(x), related by

ur(x, t) = Re
[
u(x) exp(i𝜔t)

]
, and reconstruction methods calculate complex values for stiffness, G.

The isotropic linear viscoelasticity equations are

𝜌𝜔2u + ∇ ·
[
G
(
∇u + (∇u)T)] + ∇p = 0 (1)

∇ · u − p
λ
= 0 (2)

where u, p, G and 𝜆 are complex valued. Additionally, p is pressure and 𝜔 is angular frequency. The density, 𝜌, is usually assumed to be that of water,

𝜌 ≈ 1000 kg/m3, when modeling tissue. The shear modulus, G, is often written as G = G′ + iG′′, where G′ is the storage modulus and G′′ is the loss

modulus. Generally, Equation 2 can be inserted into Equation 1, giving

𝜌𝜔2u + ∇ ·
[
G
(
∇u + (∇u)T)] + ∇ (λ∇ · u) = 0 (3)
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although this is typically only done for compressible materials. Often, tissue is modeled as incompressible and Equation 2 becomes the

divergence-free condition on the displacements,

∇ · u = 0 (4)

In a typical forward problem, the material parameters are known and u and p are unknown. Boundary conditions are also necessary. For example,

Dirichlet conditions such as u = ū may be specified, where ū are known displacements.

The weak (or variational) form of these equations is also noteworthy, as it is the weak form on which the finite-element method (FEM) operates.

The FEM is a popular numerical discretization choice for MRE because, as an integral approach, it reduces the order of differentiation, and thereby

may help to reduce noise sensitivity. For example, the incompressible forward problem defined by Equations 1 and 4 has the weak form: find (u, p) ∈
 × L2

C
(Ω) such that, for all (w, q) ∈  0 × L2

C
(Ω),

∫Ω

(
𝜌𝜔2u · w −

[
G
(
∇u + (∇u)T)] ∶ ∇w + p ∇ · w

)
dΩ + ∫Γ2

T̄ · w dΓ2 = 0 (5)

∫Ω
q ∇ · u dΩ = 0 (6)

with the trial function space  =
{

u|u ∈ H1
C
(Ω) ,u = ū on Γ1

}
and the test function space  0 =

{
w|w ∈ H1

C
(Ω) ,w = 0 on Γ1

}
. Here, w and q

are test functions,Ω is the spatial domain, Γ1 denotes the portion of the boundary of Ω where known displacements, ū, are imposed, and Γ2 denotes

the portion where known tractions, T̄, are used.

However, in MRE an inverse problem is solved, where u, 𝜌, and 𝜔 are known and G, 𝜆, and p are unknown. Boundary conditions may also need

to be reconsidered depending on the inverse formulation. Furthermore, only an estimate of u is measured from MR; this is a discrete quantity that

contains error (e.g. noise or artifacts), herein denoted ūi, where i counts over the discrete elements of ūi, typically one for each voxel. The goal of

reconstruction methods is to solve for G, based on the measured ūi, and, depending on the method, potentially include solutions for either 𝜆 or p.

The measured displacement fields, ūi, inherently contain noise, as MRI produces images with finite signal-to-noise ratio (SNR). A common and

straightforward method to reduce noise is to apply a local Gaussian filter directly to the displacement data. Another common approach is local poly-

nomial fitting, also called Savitzky–Golay filtering. From this method, smooth derivatives of the displacement fields can also be computed by using

the derivatives of the polynomials calculated during the filtering. These local spatially based filters may have issues near discontinuities and bound-

aries, but these errors will be localized. Frequency-based low-pass filtering is another option, but this may have issues in oddly shaped domains,

and, being a global operation, errors may propagate throughout the domain. More advanced denoising techniques have also been applied in MRE39.

Noise, in part, limits the resolution of MRE for many reconstruction methods, as high-resolution images would lead to many pixels per wavelength

and noise would then dominate many calculations, instead of the curvature of the waves themselves. The other part of this balance is a limit to

decreasing the wavelength, as this corresponds to increasing the frequency, which will increase attenuation.

Both compressional and shear waves are present in tissue during MRE and it is the combined displacements from both that are collected by imag-

ing. The assumption of linear viscoelasticity accounts for both types of wave; however, it is the shear modulus, and therefore the shear waves, that

elastography is oriented towards. In part, this is due to the shear-wave speed varying more over different tissue types than the compressional wave

speed, but also to the fact that the compressional waves are much faster, which makes balancing considerations like applied frequency and imaging

constraints more difficult.6 However, since the compressional wave is represented in the imaged displacements, it must somehow be considered

during reconstruction. In the equations, the compressional component corresponds to Equation 2 and the ∇p term in Equation 1 or ∇ (λ∇ · u) in

Equation 3.

Amongst reconstruction methods, there are five common approaches for considering the compressional wave: (1) ignore this term, i.e. assume the

gradient of pressure is negligible; (2) apply a discretized curl operator to the displacement data and reconstruct using this curl field, assuming it to be

divergence-free; (3) prescribe one of the parameters, most often by recasting Equation 3 in terms of 𝜈 and E, assuming a near-incompressible value

for 𝜈, and solving for E; (4) apply a high-pass filter aimed at removing the long-wavelength compressional wave; and (5) assume incompressibility

and solve Equation 1 for p in addition to G.

There are strengths and drawbacks to each of these approaches. Neglecting the pressure term has been shown to lead to errors in the recon-

structed stiffness,40 and, while this approach is mentioned as a possibility in several early MRE manuscripts, it is less common in contemporary

methods. Applying the curl and attempting to limit hydrostatic effects increases the order of derivatives applied to the displacement field. Since the

displacements contain noise and differentiation amplifies noise, this presumably increases the sensitivity of the reconstruction. Using an accurate

near-incompressible value of 𝜈 typically leads to numerical instability, so usually values in the range 0.49–0.499 are chosen. This causes the errors

in the reconstructed 𝜆 to be of several orders of magnitude. Reconstructed G may be accurate, however there may be errors in regions of strong

mode conversion.

When applying a high-pass filter, it is not always the case that the compressional and shear components are well separated in frequency space.

The shape of the domain and areas of mode conversion can lead to a lack of separation. Finally, solving for p increases the number of unknowns,

thereby demanding more from the available data. The pressure in some cases may also require some regularization. Two works38,41 have suggested

using specialized virtual fields and FEM test functions, respectively, to remove the compressional component from the equations. This seems to be

most similar to including the second unknown (bulk modulus or pressure) in the solution, but could be considered as its own category.
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While the preceding discussion has focused entirely on theory assuming harmonic excitation, as this is most common in MRE, some of the methods

described in Section 3 assume quasi-static deformation. Both of these approaches assume a steady state and so techniques from one category may

be applicable to the other.

3 METHODS

Reconstruction methods for MRE may be categorized in a variety of ways, but probably the largest division regards the two approaches to solving

the inverse problem: iterative and direct. In other literature, iterative methods are sometimes called nonlinear inversion (NLI) methods.

Iterative methods solve a nonlinear constrained minimization problem, that is they attempt to minimize the difference between the measured

wave field and simulated wave fields found from solving forward problems. During each iteration, a forward problem is solved using a set of stiffness

variables calculated from a previous iteration using minimization update techniques. Upon reaching a minimum, or satisfying some convergence

criteria, the current stiffness variables are considered to be the solution to the inverse problem. Iterative methods, therefore, are strongly dependent

on model assumptions such as initial stiffness values and boundary conditions, as they only consider displacement fields that satisfy the governing

equations. Features in the landscape of the stiffness variable space, such as multiple minima or shallow minima, may lead to a lack of uniqueness,

slow convergence, or divergence. Regularization techniques are often employed to mitigate these issues, as well as decreasing the likelihood of

inaccurate or non-physical results. These come with the drawback of additional parameters, on which the results will also depend. Iterative methods

are currently computationally expensive, due to the many matrix solutions required for computing both the forward solutions and the stiffness

variable updates; however, many potential advances may address this. Despite these concerns, iterative methods are a useful approach, due to their

relative independence from data quality and their potential for increased accuracy.

In contrast, direct methods, while having many benefits, are more dependent on data quality. They solve a linear minimization problem, by assum-

ing that the displacements from the measured wave field are sufficiently accurate to be inserted into the governing equations, leaving the linearly

dependent stiffness variables (and potentially pressure) as the unknowns available to minimize the system. After computing any required dis-

placement derivatives by standard numerical techniques, the system is solved directly for the unknowns. Typically, the resulting matrix system is

overdetermined and so is solved by least-squares matrix inversion. Due to the single solution, these methods require much less computational

effort than iterative methods. Other advantages include fewer method parameters and the guaranteed existence and uniqueness of a solution. The

solution itself is, however, more sensitive to data quality and any processing parameters, compared with iterative methods.

3.1 Iterative methods

The goal of minimization in iterative methods is to find

min
(û,p,G)

||û − ū||X (7)

subject to (û, p,G) = 0, where û are calculated displacements, ū are measured displacements, ‖·‖X denotes some norm, and the operator, , is

presumably based on the equations of motion presented in Section 2.

The measured displacement data are often used in two ways within iterative methods. The first is to define the optimal configuration of the dis-

placements calculated from the forward problem, as in Equation 7. The second is to specify the boundary conditions for the forward problem. Along

with boundary conditions, an initial distribution of stiffness must also be chosen, at which point a forward problem may be solved for displace-

ments via numerical discretization techniques, such as FEM. From here, some optimization algorithm is followed in order to update the stiffness.

This typically requires computing changes in the solution due to changes in stiffness, which, in turn, requires solving a similar forward problem for

each discrete stiffness parameter. The computed stiffness update is applied and a new forward problem is solved with this updated distribution.

This process repeats until some stopping criterion is reached. Common minimization approaches include gradient descent, Gauss–Newton, and

Newton's method. In this order, these methods are increasing in the amount of computation required per iteration but decreasing in the number of

iterations required in theory. It seems that the most common in MRE reconstruction is Gauss–Newton, as this does not require construction of the

second-order derivatives for Newton's method but offers a more accurate update than gradient descent.

One straightforward and common way to solve Equation 7 is least-squares, which attempts to minimize the function

F(G) =
N∑

i=1

3∑
j=1

(𝑢̂ij − 𝑢̄ij)∗(𝑢̂ij − 𝑢̄ij) (8)

where G is a vector containing the material parameters, i counts over voxel locations, j counts over the three components of the displacements, and

∗ denotes the complex conjugate. Derivatives of F with respect to each material parameter are computed and an update formula is constructed,

typically of the form

Gn+1 = Gn + ΔGn (9)

where ΔGn is found by solving (for a Gauss–Newton approach)

(JTJ)ΔGn = −JTr (10)

Here, r is the residual vector and J contains the derivatives of F.



6 of 18 FOVARGUE ET AL.

A common modification to the Gauss–Newton optimization algorithm is Levenberg–Marquardt.42 This approach weights the approximate Hes-

sian, JTJ, towards a gradient descent system by an adaptively updated weighting parameter. This may be thought of as regularization of the

approximate Hessian, but, importantly, this strategy does not change the stiffness variable landscape, only the approach towards a minimum. Con-

sidering the form presented in Equation 10, the gradient-descent method simply replaces J on the left-hand side with the identity and typically a

multiplier is used to limit the step size. A full Newton's method approach, which would replace JTJ with the Hessian matrix, has not yet been applied

to elastography. Other options include quasi-Newton methods, such as BFGS, which approximate the Hessian as the iterations proceed.

Regularization of the stiffness parameters is also commonly employed, often by adding some measure of the derivatives of the stiffness to the

minimization function, thereby encouraging a smoother result. Tikhonov regularization, for example, involves adding the L2 norm of the Laplacian

of the stiffness.43 These techniques usually require this additional regularization term to include a weighting parameter to weight this portion of

the minimization against the norm of the displacement differences. This type of regularization changes the stiffness variable landscape, favoring

smoother solutions and ideally improving the likelihood of a clear minimum.

3.1.1 Gradient-descent methods

The application of gradient-descent methods to elastography has been investigated by Oberai et al,44,45 in which an adjoint operator is used to

modify the linear elasticity equations to realize the descent calculation. This is more efficient than standard gradient-descent methods, as it requires

only two solutions for each iteration. The mixed displacement-pressure formulation of the static deformation equations are solved via FEM in 2D

and the minimization is regularized via a Tikhonov approach. Tan et al46 introduced a generalized adjoint method applicable to poroelasticity and

also provided comparisons between conjugate-gradient, quasi-Newton, and Gauss–Newton methods by computational complexity and by results

across various data sets, including phantom and brain (Figure 3).

3.1.2 Subzone

A particularly prominent iterative reconstruction method, and one usually oriented towards harmonic MRE, is the subzone technique, proposed by

Van Houten et al.47 In later publications, this method was evaluated further48 and extended to 3D.49,50 This method has typically been implemented

with Gauss–Newton, but also with quasi-Newton methods,51 and usually employs Levenberg–Marquardt. This approach uses a FEM discretization

of the equations and performs a minimization procedure in many small overlapping domains, or subzones, that span the global domain. Both local

and global convergence are usually considered. While specifics depend on the particular implementation, typically some minimization iterations

are performed in the subzones and, at certain intervals or after local convergence, the subzone domains are changed and values are exchanged

between them. Another round of minimization within subzones is performed and the process repeats until a global convergence criterion is satisfied.

In various implementations of this method, either 𝜈 is set to a near-incompressible value and E is solved for, both 𝜈 and E are solved for, or both 𝜆 and

G are solved for.

Many updates and extensions to this method have been published. A parallelized 3D implementation was described52 and parameter choices for

this implementation were analyzed later.53 Density was added as an unknown parameter,54 a Rayleigh-damped model has been considered,55 and

poroelasticity has been investigated.56,57 A multiresolution approach was developed58 and soft prior regularization was presented, which prede-

fines areas of homogeneous material parameters.51 The method has been used in many studies, including those on SNR,59 frequency and direction

dependence in phantoms,60 and various other in vivo and ex vivo data (Table 2). Doyley et al52 reported computation times of 1.5–4.5 hours by vary-

FIGURE 3 Comparisons of brain MRE data reconstructed using conjugate gradient, quasi-Newton, and Gauss–Newton methods and compared
with A, a T2-weighted image. B–D, G′ reconstructions are shown using the compressible equations for the three methods in the order previously
listed. E–G, G′ reconstructions are also shown using the incompressible equations. H–M, The corresponding map of G′′. Values are in units of kPa
(©2017 IEEE. Reprinted, with permission, from Tan et al46)
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ing the subzone size (twelve 2.5-GHz Xenon IV compute nodes running Linux with problem sizes greater than 104 FEM nodes). Perreard et al60

reported approximately 5 hour run times (eight AMD opteron processors running 2.5 × 105 element meshes with 100 global iterations.)

3.1.3 Gauss–Newton methods

Many other reconstructions based on Gauss–Newton iterations have been published, in addition to the subzone technique. Kallel and Bertrand61

solved the static elasticity equations in 2D with Tikhonov regularization and near-incompressible values of 𝜈. Later, this approach was modified to

utilize total variational regularization.62 Doyley et al63 and Miga64 followed similar approaches and used Levenburg–Marquardt. While the previous

studies were oriented towards US, Khalil et al18 followed this approach for OCT with Tikhonov regularization.

Eskandari et al65 solved the time-harmonic equations in a similar fashion using Levenburg–Marquardt. This implementation was later used in

a study on bandpass sampling66 and was extended to employ mesh adaptation.67 Honarvar et al68 solved the mixed displacement-pressure and

time-harmonic form using Gauss–Newton and Levenburg–Marquardt. This implementation was also used for comparison with heterogeneous

direct methods.68

3.1.4 Traveling-wave expansion

Baghani et al69 introduced the traveling-wave expansion (TWE) method for MRE. This method fits fundamental solutions of the Helmholtz equation

to the measured displacement data and also assumes local homogeneity of stiffness. The solution chosen for fitting is a summation over a finite set of

directions of complex exponential functions with a constant (and complex) wave number. The method works voxel by voxel and, for any wave number,

a linear minimization is performed to calculate the unknown parameters in the solution function, thereby fitting the solution to some local subset of

the data. The method is categorized as iterative here, because it performs an additional minimization over possible complex wave numbers, which

is achieved by a Newton-type iteration, so, at each voxel, the method computes the wave number that minimizes the error between the data and a

local fit of the data. The wave number for the compressional component is prescribed. Although an iterative solution is required at every voxel, the

iterations only involve two parameters and, when fitting, the system sizes are small due to the local constructions. This keeps the computation time

low and times of less than one minute are reported for image sizes of the order of 104 voxels in phantom studies,69 although no CPU information

appears to be given.

3.1.5 Other

Samani et al70 introduced a method that uses the linear elasticity equations themselves as an update formula for iterating towards the solution.

This method uses FEM and considers the quasi-static 3D equations with 𝜈 set to a near-incompressible value. A study published later used and

extended this method.71 A genetic algorithm approach was presented by Zhang et al,72 which also uses FEM and a near-incompressible 𝜈. Fu et al73

considered local stiffness homogeneity within an iterative approach. This method performs a minimization procedure at each voxel by considering

increased and decreased stiffness and finding the midpoint. This method assumes 2D and a near-incompressible 𝜈. As with the TWE approach, the

homogeneity assumption significantly reduces computational time.

3.2 Direct methods

Direct methods take advantage of the abundance of data acquired in MRE to solve directly for the stiffness. This leads to a simpler approach than

iterative methods, usually requiring fewer parameters and much less computational effort. If stiffness is allowed to vary spatially, then regularization

is sometimes still required to stabilize the solution. These heterogeneous direct methods typically solve over the entirety (or large portions) of

the domain and attempt to capture the true heterogeneous nature of the stiffness. In contrast, local direct methods assume local homogeneity of

stiffness and perform independent solutions on many small subdomains that combine to span the full domain.

While the accuracy of local methods will suffer in regions with significant stiffness heterogeneity, the homogeneity assumption simplifies and

stabilizes the methods as well as decreasing computational expense. In the simplest case of local direct inversion, and where the compressional

component is assumed to have been removed, the stiffness at voxel i could be found by least squares:

Gi =
−𝜌𝜔(Δ̄u)T

i
ūi

(Δ̄u)T
i
(Δ̄u)i

(11)

where ūi is the displacement data vector and (Δ̄u)i is some approximation of the Laplacian of the data at voxel i.

3.2.1 Heterogeneous direct methods

Heterogeneous direct methods consider stiffness to vary spatially and invert the governing equations directly with the proper derivatives affecting

the stiffness. These methods are less computationally expensive than iterative methods, as only a single solution is required, but are more expensive

than local direct methods, as the matrix system is much larger. Allowing for stiffness heterogeneity may lead to more instability and sensitivity in the

method, and therefore these methods sometimes require regularization. As with iterative methods, a common regularization approach is Tikhonov,
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where, again, a measure of the Laplacian of the stiffness is added to the minimization. If pressure is additionally solved for, then this may also

be regularized.

Several methods consider 2D quasi-static elasticity with near-incompressible values of 𝜈 and discretization via FEM.74-76 Eskandari et al76

suggested a quadratic programming technique, which constrains stiffness values to physically reasonable ranges. An adjoint weighted equation for-

mulation was presented and demonstrated in multiple instances such as compressibility and anisotropy.77,78 Zhang et al79 extended this approach

to the time-harmonic case in 2D with a mixed formulation and total variation regularization. Effects of noise on this method were presented later.80

Park and Maniatty40 solved the mixed displacement-pressure form of the harmonic linear elasticity equations. In this approach, FEM is used

with Tikhonov-type regularization applied to the pressure, whereas the stiffness is not regularized. The measured displacement data are filtered

by solving for a new displacement field that minimizes three terms: the difference compared with the measured displacements, the divergence of

the field, and the Laplacian of the field. Between the pressure regularization and displacement adjustment, at least five regularization parameters

are introduced. In the FEM solution, all equations associated with boundary nodes are removed, which removes the unknown boundary terms in

Equation 5. This technique was also used in Eskandari et al76 and the following heterogeneous methods.

Honarvar et al81 suggested a similar process to reconstruction to Park and Maniatty,40 but used sparsity regularization instead of Tikhonov for

both pressure and stiffness. In Honarvar et al, the sparsity regularization is performed using the discrete cosine transform and masking in frequency

space to limit the stiffness and pressure distributions to lower frequency contributions, effectively smoothing the result. As opposed to Tikhonov,

sparsity reduces the size of the matrix system, but also globalizes the solution, filling the otherwise sparse and banded matrix. Removing these

properties of the system should lead to a significant increase in computation time, unless only very few frequencies are included. On the other hand,

filling the matrix could help to stabilize the solution.

A similar method was later introduced in which the curl operator is applied to the equations to remove the pressure term.82 In the finite-element

process, integration by parts is applied for an additional time to what is standard in order to remove the extra derivative introduced by the curl.

Then, in order to remove the boundary conditions, special basis functions are utilized. Similar results were reported between the mixed and curl

forms, although, since removing the pressure term reduces the number of unknowns, the curl form is computationally faster.82 The mixed form was

later compared with an iterative method.68 Computation times of 15 minutes were reported for the curl form for 3D data and 35 minutes for the

mixed form82 (computed on 15×15×15 overlapping subdomains of a 140×46×30 ROI with a MATLAB implementation, but CPU information was not

reported). In Fovargue et al,38 computation times of approximately 50–90 seconds were reported for data sets with approximately 24 000–33 000

voxels for a mixed heterogeneous implementation with Tikhonov regularization (MATLAB with an Intel Xeon 4-core, 8-thread, 3.6 GHz processor).

In Eskandari et al,76 compute times for the 2D heterogeneous direct method were compared with those of an iterative method65 and local method

for varying image sizes (Figure 4).

3.2.2 Local frequency estimation

Manduca et al83 presented a local direct method called the local frequency estimation (LFE) method, which is based on particular frequency banks

and filtering described in Knutsson et al.84 The stiffness is then calculated from the frequency estimate by assuming homogeneity and no attenuation

FIGURE 4 Plot comparing the computational cost of various methods considering 2D data (measured on a quad-core CPU with two 2.82-GHz
processors): a single iteration of an iterative method,65 a heterogeneous direct method, a local direct method, and the quadratic programming
technique outlined in Eskandari et al.76 (©IOP Publishing. Reproduced with permission. All rights reserved. Eskandari et al. 2011)
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(meaning only the real part of the complex stiffness modulus is provided). Although the compressional component is not accounted for directly,

its effect may be minimized by limiting the frequency range during filtering. Braun et al85 investigated the use of Gauss filters in place of the lognor-

mal quadrature filters used previously83 and principal frequency estimation was proposed by McGee et al.86 LFE has also been used to investigate

the effect of off-frequency sampling,87 as well as in many ex vivo and in vivo animal and human studies (Table 2).

3.2.3 Direct inversion

Direct inversion methods (sometimes denoted DI) perform a pixel-wise inversion of the homogeneous time-harmonic linear viscoelasticity

equations. This was first suggested in Romano et al88,89 using a variational approach and Oliphant et al90,91 using polynomial fitting to compute

the necessary derivatives. In these first implementations, the compressional component is sometimes ignored. Manduca et al, proposed high-pass

filtering of the wave data in order to limit the low-frequency compressional component.92,93 Manduca et al93 also presented spatio-temporal direc-

tional filtering as a pre-processing step and compared results from direct inversion and LFE algorithms. Sinkus et al94 followed a similar procedure

to find tensor components of stiffness with a near-incompressible value for 𝜈. Another common approach among direct inversion implementations

is to apply a discrete curl operator to the displacement data and reconstruct using the curl field.92,95

Okamoto et al96 proposed a finite-difference-based direct inversion using total least squares, which may provide more accuracy when there is

uncertainty in the independent variable. This work also compared MRE with dynamic shear testing in soft gels. Connesson et al41 implemented a

virtual fields method approach, wherein the virtual field is constructed to remove the bulk term and reduce dependence on noise. Fovargue et al.38

proposed a FEM-based inversion that uses a specific basis for the FEM test functions to remove the pressure term. Computation times for local

direct methods are also supplied in Fovargue et al,38 where times ranging from 3–9 seconds were reported (MATLAB with an Intel Xeon 4-core,

8-thread, 3.6-GHz processor).

Direct inversion methods have been used extensively in both research and clinical studies. McLaughlin et al97 used this approach to investigate

filtering. Papazoglou et al98 investigated factors such as SNR and actuator orientation on the resulting elastogram and Riek et al99 investigated the

frequency dependence of stiffness. Table 2 contains many examples of DI methods applied to human and animal studies, where, to provide some

division, curl-based approaches are listed separately from non-curl-based approaches.

3.2.4 Multifrequency direct inversion

Combining multiple-wave data sets corresponding to the application of different vibrational frequencies is one potential avenue for increasing the

stability and reliability of MRE, by essentially increasing the amount of data per unknown. This comes with the disadvantages of needing to account

FIGURE 5 Diagram showing the process used in the MDEV inversion. The curl components (columns A and E) are used to find the magnitude and
phase of G for each multifrequency data set (columns B and D), which is averaged in column C by comparison with a T2-weighted image (©2013
Wiley Periodicals, Inc. Reproduced, with permission, from Hirsch et al101)
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for the frequency dependence of stiffness and potentially longer scan times. Papazoglou et al100 proposed a local direct inversion method using

high-pass filtering to limit the compressional component and utilizing multiple data sets representing different frequencies. The stiffness is com-

puted in accordance with a springpot power law after first computing the exponent parameter. Hirsch et al101 proposed a similar approach called

multifrequency dual elastovisco (MDEV) inversion. The phase and magnitude of the complex shear modulus are computed separately and using aver-

ages over the multifrequency data sets. This method also computes and uses the curl of the wave data. A diagram illustrating the process is shown in

Figure 5. MDEV is also used as the inversion algorithm in the elastography pipeline presented by Barnhill et al,39 as well as some studies on human

data (Table 2). Tzschatzsch et al102 introduced a 2D multifrequency approach called k-MDEV, which uses filters in frequency space to construct a set

of plane-wave approximations in multiple directions (these filters also work to limit the compressional component). Estimates of the stiffness and

attenuation are found from plane-wave assumptions and by averaging over all frequencies and plane-wave directions. Multifrequency inversion is

also applicable to other reconstruction methods, not only local direct inversion, and this is an area of active research.

4 DISCUSSION AND CONCLUSION

The methods presented in Section 3 are also summarized and categorized in Table 1, based on approaches to the inverse solution, local homogeneity

assumption, and compressional component of the wave data. Some of the methods have been successfully applied to ex vivo and in vivo human and

TABLE 1 A summary of many of the reconstruction methods mentioned in this review. Here, they are presented in
chronological order and categorized in terms of their approach to the inverse problem, whether they assume local
stiffness homogeneity, and their consideration of the compressional component of the wave data. For the latter
category, the following symbols are used: IG – ignore; ∇× – compute the curl of the wave data; NI – prescribe a
near-incompressible value; P – additionally solve for pressure in the mixed displacement-pressure formulation;
HPF – apply a high-pass filter to the data; G𝜆 – solve for both the shear modulus, G, and the first Lamé parameter, 𝜆

Method Inverse problem approach Local stiffness homogeneity Compressional component

Kallel et al61 Iterative No NI

Manduca et al83 Direct Yes IG

Romano et al88 Direct Yes IG

Oliphant et al90 Direct Yes IG

Van Houten et al47 Iterative No NI

Doyley et al63 Iterative No NI

Fu et al73 Iterative Yes NI

Sinkus et al94 Direct Yes NI

Manduca et al92 Direct Yes HPF

Samani et al70 Iterative No NI

Van Houten et al49 Iterative No NI

Miga et al64 Iterative No NI

Oberai et al44 Iterative No P

Zhu et al74 Direct No NI

Doyley et al52 Iterative No G𝜆

Sinkus et al95 Direct Yes ∇×

Park and Maniatty40 Direct No P

Eskandari et al65 Iterative No NI

Guo et al75 Direct No NI

Baghani et al69 Iterative Yes NI

Eskandari et al76 Direct No NI

Okamoto et al96 Direct Yes IG

Honarvar et al81 Direct No P

Papazoglou et al100 Direct Yes HPF

Zhang et al79 Direct No P

Honarvar et al82 Direct No ∇×

McGarry et al51 Iterative No NI

Hirsch et al101 Direct Yes ∇×

Connesson et al41 Direct Yes G𝜆

Honarvar et al68 Iterative No P

Tzschätzsch et al102 Direct Yes HPF

Tan et al46 Iterative No P

Fovargue et al38 Direct Yes P
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animal data. A summary of a selection of these studies is provided in Table 2. MRE has covered many organs, each with their own challenges as well as

specific disease and treatment response areas. The liver fibrosis and brain sections of Table 2, for example, contain many studies, as these have shown

much promise with MRE. More challenging areas include heart and skeletal muscle. Heart data often do not contain enough pixels to apply traditional

reconstruction techniques, so, in addition to the one study listed in Table 2, other studies have measured relative changes in stiffness by examining

changes in shear-wave amplitude103-105 and by utilizing a spherical shell model.106 Due to the strong anisotropy present in muscle, some methods,

after carefully considering the wave propagation direction, apply damped sine-wave fits107 or simple peak-to-trough measurements.108-111

Although the iterative subzone, TWE, and global direct with sparsity regularization methods have been used in a few studies, local direct methods

seem to dominate Table 2. Also, these methods, particularly LFE, have been implemented more often in software made available to clinicians and

other researchers, such as the LFE method in the MRE Wave software (Mayo Clinic, Rochester, MN, USA) and Resoundant software (Rochester, MN,

USA), as well as the MDEV, k-MDEV, and LFE methods on a publicly accessible website.177 Several possible reasons for this disparity include low

computation time, ease of use, and guaranteed solutions.

Local direct methods are by far the least computationally expensive; however, few publications on these methods38,76 provide computation time

estimates. This is presumably because they are too short to be of concern. Even for larger 3D data sets, the reconstruction time is measured in sec-

onds (this is not including steps such as phase unwrapping; only stiffness reconstruction from properly processed displacement data). In contrast,

computation times of heterogeneous direct methods are typically measured in minutes. These methods sometimes rely on regularization parame-

ters being optimized, so may need to be run multiple times. This may also be true of the even more expensive iterative methods. The computation

times of these methods, however, may vary considerably, as they depend strongly on implementation, domain size, and parameters. Times measured

in hours have been reported, but with increasing computing power, domain-size reduction, and algorithmic advances, those times may be signifi-

cantly reduced. Overall, few direct comparisons of computational time between methods have been reported and the comparisons made here should

be taken as mostly anecdotal, as the reported times span years and are performed on different implementations with different CPU specifications.

Furthermore, local direct methods are usually not dependent on parameters, besides those controlling the initial smoothing of the wave field.

While some options may be available to researchers, these methods are typically able to be used out of the box. Methods that consider stiffness

heterogeneity, whether direct or iterative, usually require regularization terms to restrain the stiffness. These terms are weighted against the orig-

inal equations, but the weights of these parameters are difficult to know a priori and can affect the resulting elastogram. Iterative methods, being

TABLE 2 Many in vivo and ex vivo human and animal studies using MRE have been
published and a selection are listed in this table. The location in the table indicates the area
of the study (row) and the type of reconstruction used (column). The first portion of the
table includes studies on particular disease and treatment areas, while the second portion
covers specific organs. The highlighted methods are as follows: LFE – local frequency
estimation method; DI – direction inversion methods using high-pass filtering or prescribed
near-incompressible values to address the compressional wave; CDI – direction inversion
methods using the curl to address the compressional wave; MDEV – multifrequency dual
elastovisco inversion method (Section 3.2.4); Subzone – iterative method as described in
Section 3.1.2. The last category (Other) includes two studies using a global direct method
with sparsity regularization120,176 and one using TWE174

Area LFE DI CDI MDEV Subzone Other

Brain cancer 112 113

Breast cancer 114,115 94 28,116

Liver cancer 29 117

Prostate cancer 118 119 120

Liver fibrosis 24,121-125 25

Alzheimer's 31 30

Parkinson's 32

Multiple sclerosis 33,126 34 126 127

Ablation 128,129

Liver response 130,131

Tumor response 132 133

Brain 134 135-141 112,142-145 146,147 148-151

Breast 152

Heart 153 154

Kidney 155-157 158 159

Liver 160 136

Lung 161-164 165

Muscle 166,167 168-171

Pancreas 172 173

Prostate 174 175 174,176
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more complicated, are additionally dependent on parameters other than stiffness regularization, such as subdomain size. While the parameter

governing the Levenberg–Marquardt procedure is updated during the iterations, the initial choice may still have an effect. Results and comparisons

from iterative and heterogeneous methods can therefore be harder to justify if significant parameter adjustment has occurred.

Reconstruction methods are sensitive to inconsistencies in the wave data, such as noise, but also imaging artifacts or other wave behavior that

deviates from material assumptions. It is the regularization mentioned above that decreases sensitivity to these phenomena and allows methods

to attain a level of well-posedness. Local direct methods again excel here. This is due to both the homogeneity assumption, which increases stability

and robustness, and the direct approach, which guarantees a unique solution.

Although local direct methods dominate the studies in Table 2, there has been much research devoted to other approaches, as seen in Table 1.

This is presumably because of the potential for increased accuracy from heterogeneous and iterative methods. Heterogeneous approaches cor-

rectly capture changes in stiffness not only at large discontinuities but also in continuously varying regions. Local direct methods are inaccurate

in these regions, to varying degrees, and changes in one component of the complex shear modulus can lead to inaccuracies in both. Furthermore,

local methods are not guaranteed to predict an average of the underlying varying stiffness, but instead may calculate incorrect values, which is

particularly evident near discontinuities. Iterative methods, additionally, are less sensitive to noise in the data, at least in theory. This also leads to

increased accuracy, as noise tends to decrease computed stiffness in direct methods, because noise is seen as high-frequency waves, which would

signal a lower underlying stiffness. Varying data quality is common too, as attenuation of the waves leads to decreasing SNR as distance from the

transducer increases.

If iterative and heterogeneous methods can increase ease of use and robustness, they may begin to compete with local direct methods in terms

of clinical viability. This may occur through approaches for quality assessment and confidence estimates or through some automatic adjustment

of parameters. Perhaps too often, new reconstruction methods, or updates to existing ones, are validated only on in silico and phantom wave

data, instead of being tested on more difficult anatomical data. Of course, these broader comparisons require well-established stiffness results

or publicly available MRE data sets. Another option is the development of in silico data sets that properly capture the added difficulty inherent in

anatomical data.

MRE reconstruction may also be extended by considering other material assumptions. Anisotropy is a common feature of tissue and so has been

included in some reconstructions.170,171,178-181 Associated studies include investigations into the validity of anisotropic material assumptions,182

results of applying isotropic reconstructions to anisotropic data,60,150 experimental requirements,183 and hardware to produce adequate wave

data.184 Poroelastic material assumptions have also been studied in MRE46,56,57 as well as US elastography.185 Nonlinear, usually neo-Hookean,

constitutive laws have been investigated in the context of static elastography.186-189

Many research directions within MRE are progressing as it continues to strengthen as a diagnostic method. It is becoming more widely used in

tangential research and in the clinic through MRE packages available for MR systems. Success has been shown in staging liver fibrosis and potentially

in stratification of tumor malignancy and various brain diseases. As precision and accuracy improve, it has the additional potential to replace invasive

biopsy procedures for diagnoses. Stiffness reconstruction algorithms have played a vital role in positioning MRE at the forefront of medical imaging

research through advances in robustness, accuracy, ease of use, and computational cost. Further improvements in these areas can allow MRE usage

to become more widespread by increasing reliability and confidence in the approach.
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